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1. Introduction
Contemporary methods of designing and testing mechanical vehi-

cles are based on simulation techniques that require the use of precise 
models of vertical and horizontal dynamics and sequences of random 
events occurring in road traffic conditions. This problem is relevant to 
the optimization of vehicles with internal combustion engines, electric 
vehicles (EV) and hybrid electric vehicles (HEV). To select the most 
appropriate drive system architecture for a particular vehicle class and 
driving cycle, it is necessary to optimize the size of components ac-
cording to their cost functions, such as the lowest 2CO  emissions, the 
lowest weight, fuel savings or any combination of these attributes in 
the architecture [1, 7, 9 and 18]. 

Regardless of the simulation technique used: quasi-static using 
a “Backward-facing” vehicle model or a dynamic simulation with a 
“Forward-facing” model, understanding of the representative driving 
cycle is essential. In the first case, for an open-loop system, the time 
series of speed is imposed on the input of the vehicle model in order 
to calculate rpm and torque on the wheels. In a closed-loop vehicle 
model, on the other hand, the driving cycle is a setpoint for the driver 
block, which generates a suitable engine torque. The time and cost 

constraints associated with the design and testing of various possible 
vehicle architectures require methods of driving cycle synthesis that 
can meet the modelling and simulation requirements of automotive 
engineers throughout the R&D process. It is not possible to optimize 
the parameters and gradually increase the autonomy of the vehicles 
based on standard driving cycles, and such optimization cannot pre-
vent “cycle beating”. To ensure that the synthesized time series based 
on the collected databases are representative, it is necessary to use 
algorithms adopting techniques based on stochastic and statistical 
models [6, 19]. To define the equivalence criteria, the synthesis proc-
ess is concluded with a verification of the results, i.e. each generated 
cycle, through statistical analysis in the time or frequency domain. A 
combination of multiple criteria is frequently used [2, 4].

The methods of driving cycles construction require quantization of 
traffic parameters. Depending on their function (emissions estimation, 
fuel consumption estimation or traffic engineering, etc.), the defined 
states can be synthesized for micro-trips, segments, heterogeneous 
classes or modal cycles [17]. Micro-trips are driving models between 
stops including periods of inactivity. Traffic signals and overloads 
contribute to “stop-go” driving patterns, and result in increased fuel 
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consumption. Micro-trips are a good representation of fuel consump-
tion and emissions. Segments model situations for various types of 
roads and driving conditions classified, for instance, by the Level of 
Service (LOS). They may start and end with different driving param-
eters, which is why speeds and accelerations have to be accordingly 
adjusted when combining segments in the course of cycle synthesis. 
Driving cycles based on heterogeneous traffic classes determined 
through a statistical breakdown of data are constructed as kinematic 
sequences using probabilistic methods and analysis of probability dis-
tributions. This method is not aimed at testing emissions and fuel con-
sumption. Modal cycles represent recorded parameters of vehicle traf-
fic for specific acceleration intervals, constant speed or idle periods. 
In procedures using the theory of stochastic processes to analyse the 
equations of vehicle dynamics, represented by speed and acceleration, 
the major trend in recent research focuses on methods based on the 
Markov chains theory [8, 11]. There have also been attempts at using 
3D Markov models in the synthesis of driving cycles, which incor-
porate the roadway slope [20]. Methods based on multi-dimensional 
Markov chains enable a realistic assessment of fuel consumption and 

2CO  emissions, even after time compression of the synthesized time 
series [5]. However, such simulations involve a high time cost.

This paper proposes a method for synthesizing naturalistic driving 
cycles in which the information about instantaneous values of accel-
eration can be replaced by the degree of multifractality assessed using 
formalism based on wavelet leaders.  This helped reduce the number of 
Markov chain dimensions in the simulation process.  The process was 
illustrated on the example of the Markov chain Monte Carlo (MCMC) 
algorithm for the vehicle speed signal. The input for the algorithm was 
recorded during a series of experiments in real conditions. Statistical 
factors and mean tractive force (MTF) were used to select and classify 
road traffic models equivalent to the real conditions.

2. Wavelet leaders multifractal formalism in MCMC 
technique

Each real driving cycle can be regarded as a sequence of random 
transitions between defined m-states of the vehicle occurring in road 
traffic. The frequency of specific states depends on the technical pa-
rameters of the car, the intensity of road traffic and the driver’s behav-
iour. By determining the probability of remaining in the current state 
or transition into a different state, we can describe the examined phe-
nomenon in the form of a transition probability matrix (TPM) (1):
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where the entry  ijP (2) is the probability of transition from and to 
state j  when j i≠  or remaining in state i  when j i= . The prob-
ability ijP  can be calculated using the following equation:
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where ijN  is the number of transitions from and to state j . The sum 
of the values of entries in each row is equal to one. The random proc-
ess { }n n NX ∈  is referred to as the Markov chain if for any n N∈  the 
following equation is true: P | P |X X X X X Xn n n n+ +{ } = …{ }1 1 0 1,� , , . It 
is assumed that the TPM is stationary, which implies that the Markov 
chain is homogeneous. Therefore, for Markov chains, the conditional 
distribution of the random variable 1nX +  depends only on the cur-

rently known value of nX . Thus, considering the current driving 
state, the future state can be determined using Monte Carlo simulation 
based on the transition probability matrix. It is possible to generate a 
driving cycle of any duration, which may be used to identify a cycle 
with the required duration, for the assumed equivalence criteria.

The synthesis of a driving cycle using the MCMC method, where 
– in addition to the speed signal – also consider other parameters are 
taken into consideration, requires a multi-dimensional description of 
the defined vehicle states, which significantly complicates the deter-
mination of the transition probability matrix and extends the imple-
mentation time of the algorithm. If the second parameter is accelera-
tion, which is not measured directly in most real driving cycles, it 
becomes necessary to differentiate the speed signal in order to acquire 
information about motion dynamics. Where this is the case, the stand-
ard 1-second sampling period for the time series of speed does not 
guarantee a sufficient precision of the acceleration signal. 

Papers where road traffic was analysed based on recorded vehicle 
speed signals indicate the multifractal properties of the dynamics of 
such traffic [3, 16]. Multifractality can also be observed both in real 
and standard driving cycles [14]. Our research proposes to eliminate 
the acceleration signal from the multi-dimensional description of ve-
hicle states using information about driving dynamics represented by 
multifractal parameters of the speed signal. The iteration in the Monte 
Carlo simulation was performed for a specific time, with a require-
ment concerning driving dynamics. The multifractal analysis, which is 
based on estimated scaling exponents of the signal, is a popular statis-
tical tool used to assess empirical data. In the case of time series, math-
ematical formalism was initially based on increments of their value, 
measured as Hölder point exponents h  of time function ( )x t  at point 

0t , determined by the supremum of all exponents that, for constant 
0C > , meet the following condition: ( ) ( )0 0

h
nx t P t t C t t− − ≤ − , 

where ( )0nP t t−  is a polynomial of degree n h<  [13, 15, 16]. The 
result of the algorithm is the multifractal spectrum ( )D h , i.e. a func-
tion describing the fractal dimensions of points with the same Hölder 
exponent.

The multifractal formalism in the time and frequency domain that 
is used in the research makes it possible to estimate multifractal pa-
rameters using wavelet leaders, which are representatives of local 
Hölder exponents of the signal. The algorithm is characterized by low 
computing costs, numerical stability and high versatility with respect 
to real signals. For coefficients (3) of the discrete wavelet transform 
(DWT) of function x t( )  and basic wavelet with a compact support 
ψ 0 t( ) :

 d j k x t t k dtx
R

j j,( ) = ( ) −( )∫ − −2 20ψ  , (3)

wavelet leaders (4) for the collection of largest coefficients 
d j k dx

, ,,( ) ≡ ′λ  in the neighbourhood of 3λ  are defined in any scale 
by the following equation: 

 
L j k sup dx ,( ) = ′ ′∈λ λ λ3  , (4)

where ,j k  are integers and 3 3 1 1λ λ λ λ λ: , , , ,= = ∪ ∪− +j k j k j k j k  and  
3 2 1 2λ λ: ,,= = +( )
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It can be demonstrated [10] that Hölder exponents are scaling ex-
ponents of wavelet leaders: L j kx

jh, ~( ) 2 . Also, the structural func-
tion (5) defined for wavelet leaders is described by a power law where 
the exponent is a multifractal scaling exponent ζ q R R( ) →: .
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where q  is the order of the structural function, and jn  is the number 
of intervals of the multi-resolution analysis.

The function generated using the Legendre transformation of the 
multifractal scaling exponent ζ q( ) , under mild regularity conditions, is 
the upper limit of the multifractal spectrum (6) of the investigated signal:

 D h min qh qq( ) ≤ + − ( ) ≠0 1 ζ  (6)

Coefficients of the Taylor expansion of the exponent ζ q( ) – log-
cumulants pc  – are an alternative description of the parameters of the 
multifractal spectrum of the analysed signal:
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In particular: the coefficient 1c  describes the position of the maxi-
mum of the spectrum, and coefficients 2 3 and  c c  describe its degree 
of multifractality, i.e. the width of the spectrum and its asymmetry, 
respectively. The dynamic properties of the systems are successfully 
described based on the parameters of the multifractal spectra of the 
representative time series [12]. Approximation of ζ q( )  (7), i.e. also 
of the multifractal spectrum ( )D h , using coefficients pc  significant-
ly simplifies the algorithms for a comparative analysis of the investi-
gated systems.

3. Simulation tests of driving dynamics and wavelet 
leaders of speed signal

The relationship between the time series of acceleration and pa-
rameters of the multifractal spectrum of speed has been illustrated 
on the example of the synthetic signal ( )v n  of vehicle speed (Fig. 
1a). The signal was resampled to achieve signals with acceleration 2, 
4 and 8 times higher. Due to the resampling, the histograms are not 
identical, but they are comparable. The signals that had been short-
ened were repeated 2, 4 and 8 times, respectively, to obtain signs with 
the same number of samples.

Fig. 1. Synthetic signal of vehicle speed (a) and its histograms (b) in the spec-
ified time; the same run in a two times shorter time (c) with compara-
ble amplitude distribution (d); the same run in four times shorter time 
(e) with comparable amplitude distribution (f); the same run in eight 
times shorter time (g) with comparable amplitude distribution (h);

For the speed signals in figure 1, accelerations were deter-
mined (using differentiation – Fig. 2), as well as multifractal spectra 
(Fig. 3).

Fig. 2. Accelerations of signals in Fig. 1 a), c), e) and g)

Fig. 3. Multifractal spectra of vibration signals in Fig. 1 a), c), e), g)

An analysis of the singularity spectra demonstrates that the posi-
tion of their maxima and width depends on the accelerations of the 
simulated signals. The log-cumulants of synthetic signals (Table 1) 
and relationships of log-cumulants and acceleration (Fig. 4) were de-
termined. The first and second log-cumulant, describing the position 
of the maximum of the multifractal spectrum and its width, respec-
tively, were proposed as the synthetic parameters for the assessment 
of driving dynamics using the multifractal spectrum.

Fig. 4. Relationship between log-cumulants and maximum acceleration,  
a) first log-cumulant, b) second log-cumulant

Table 1. Values of log-cumulants of synthetic signals

Log-cumulant
Signal

x 2x 4x 8x

1c 0.8127 0.6976 0.4003 0.1723

2c −0.1640 −0.1187 −0.0841 −0.0307

3c 0.1220 0.0282 0.0127 0.0055
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4. Implementation of the algorithm for the synthesis of 
driving cycles and analysis of research results

An algorithm was proposed to generate naturalistic driving cycles 
using first-order Markov chains and multifractal formalism based on 
an analysis of wavelet leaders (Fig. 5). 

Fig. 5. Block diagram of the MCMC algorithm for synthesizing driving cycles

The paper presents results of tests and analysis of car traffic in ac-
tual road conditions, represented by urban driving in a large agglom-
eration (Fig. 6). The analysis was carried out based on the time series 
of vehicle speed recorded with a sampling period of 1 s. The research 
has been described in the paper [14]. Due to the large share of “zero 
speeds” (idle periods) in the test, amounting to approx. 25%, frag-
ments corresponding to stops were removed from the recorded time 
series (Fig. 7), which enabled the segmentation and determination of 
the transition probability matrix (TPM) and testing of driving dynam-
ics through an analysis of log-cumulants. The recorded speeds were 
divided into 20 even intervals corresponding to increasing speeds oth-
er than zero as well as a 21st interval corresponding to stops. Speed 
resolution is approx. 0.9 m/s. The authors attempted to achieve a fairly 
good car speed resolution while avoiding intervals with a very low (or 
zero) probability of occurrence.

Statistical analyses were conducted in the R environment, and the 
multifractal analysis was carried out in Matlab.

The transition probability matrix (TPM) calculated based on the 
reference signal of the cycle had the size of 21x21 (Fig. 8).

A simulation of 100 cycles was carried out in accordance with the 
Metropolis-Hastings algorithm. Three sample cycles – candidates No. 
1, 2 and 3 (Figs. 9a–c) were selected to illustrate the results of the al-
gorithm. The main statistics of the speed signal (maximum, minimum, 
mean and standard deviation) of the sample cycles are similar to the 
statistics of the reference signal. There was also a fourth cycle shown 
– candidate No. 4 – generated for verification purposes based on the 
distribution of speed amplitudes (Fig. 9d). 

The first two log-cumulants determined for each cycle (Fig. 10) 
are the best match of dynamics in comparison with the reference sig-
nal for candidate No. 1.

The conformity of probability density distributions to the distri-
bution of the reference cycle has also been verified (Fig. 11a–d). The 

distribution of the reference cycle has been approximated with an 
empirical function. The chi-squared test or the Kolmogorov–Smirnov 
test can be used to check the goodness of fit of empirical data to the 

Fig. 6. Real cycle representative for the conducted research – 20-minute frag-
ment, a) speed signal, b) accelerations calculated based on speed,  
c) car speed histogram

Fig. 7. Typical real cycle after removing stops, a) speed signal (reference sig-
nal), b) accelerations calculated based on speed, c) car speed histo-
gram

Fig. 8. Transition probability matrix (TPM) for the cycle shown in Fig. 7a
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approximated probability distribution function, but these tests reject 
the null hypothesis for the investigated duration of the driving cy-
cle. For the test to confirm the null hypothesis, the duration of the 
driving cycle would have to be significantly extended, which is not 
possible. In such a situation, it is best to estimate the goodness of fit 
of the theoretical distribution to the observed distribution through a 
visual comparison. This was done using the probability-probability 
plot (Fig. 11e). Apart from the cycle of candidate No. 4, the best fit is 
demonstrated by candidate No. 1.

Fig. 11. Histograms of the speed signal for the simulated cycles com-
pared with the reference distribution (red dashed line) a)–d) 
e) probability-probability plot

The accelerations of candidate No. 4 (Fig. 12), which has a speed 
amplitude distribution that perfectly matches the reference distribu-
tion, are entirely different – almost constant. The accelerations of the 
remaining candidates can only be assessed in terms of their minimum 
and maximum values. 

In the method of modal cycles and speed-based segmentation, 
which was adopted in this paper, the time series produced using the 
Markov model are stepped, which means that they had to be smoothed 
in the next step. The method of local quadratic regression smoothing 
was selected from among the various methods to smooth the series. 
Once the iteration and filtration process was completed, the stop pe-
riods were added to the time series, and a search was started for the 
most representative cycles out of all of the cycles produced by the 
synthesis, for the selected equivalence factor.

In the course of the study, the results of the algorithm for the syn-
thesis of equivalent driving cycles were analysed according to select-
ed statistical parameters and the criterion of the mean tractive force 
(MTF) (8), i.e. the tractive energy of the vehicle (Table 2) transmitted 
through the wheels:

 ( ) ( )1

trac

trac
total t

F F t v t dt
x τ∈

= ∫ . (8)

where: total tractive force ( )F t  is the sum of the forces of aerody-
namic resistance airF , rolling resistance rollF  and inertia of the ve-
hicle inerF , ( )v t  and ( )a t  are speed and acceleration, respectively, 
for a driving cycle of the duration totalx  and tracτ  represents the time 
intervals during which ( ) 0F t > .

In the calculations of the MTF coefficient, the most significant el-
ement is the force of inertia, which is proportional to acceleration. The 
best fit to the real cycle according to the MTF criterion is represented 
by candidate No. 1. The primary parameters considered in the course 
of cycle verification are listed in Table 3. Minimum and maximum 
values of speed and acceleration, subject to initial verification, were 
omitted.

All synthesized driving cycles have the correct mean value and 
standard deviation. The selection also cannot be performed based on 
the distributions of probability density. Candidates No. 1 and No. 4 
show the best fit of speed amplitudes probability distribution. 

If we assume a discrepancy of the MTF coefficient of the gener-
ated cycle with the reference cycle of over 10% to be an unacceptable 

Fig. 9. Sample simulated driving cycles

Fig. 10. Scatter plot of log-cumulants determined for the investigated cycles

Fig. 12. Accelerations in the simulated cycles calculated based on speed

Table 2. Vehicle parameters

airF [N] Aerodynamic resistance ( )20.4v t

rollF [N] Rolling resistance 383

inerF [N] Inertia ( )1300a t
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in terms of equivalence to real driving conditions, the log-cumulants 
tested in the phase of synthesis of candidate cycles and the MTF used 
to verify their equivalence suggest candidate No. 1.

5. Conclusions

The presented research results provide a new perspective on sta-
tistical-random methods for synthesizing real vehicle driving cycles. 
It was demonstrated that driving dynamics represented by accelera-
tion could be reproduced using multifractal parameters of speed sig-
nals. The use of wavelet leaders for driving dynamics testing made it 
possible to carry out cycle synthesis, which took into consideration 

speed and acceleration, using Monte Carlo simulation with a single-
dimensional Markov chain. The algorithm for the synthesis of equiva-
lent driving cycles was verified using the criterion of mean tractive 
force (MTF).

The database used so far included data from tests of vehicles with 
internal combustion engines. The authors’ future research will include 
an analysis of driving cycle prediction and road traffic modelling for 
the purpose of drive system control and electricity management in 
electric vehicles. The expected results will be useful in designing the 
infrastructure of charging stations for electric cars.

Table 3. Summary of selected values characteristic to the investigated cycles 

Driving cycle
Fit of the distribu-

tion Mean value Standard devia-
tion Log-cumulant 1 Log-cumulant 2 MTF

[-] [m/s] [m/s] [-] [-] [N]

Reference cycle 9.7 4.4 0.72 -0.13 689

Candidate 1 + 10.0 4.6 0.74 -0.12 743

Candidate 2 +/- 9.7 4.4 0.58 -0.16 820

Candidate 3 +/- 10.4 4.5 0.62 -0.10 796

Candidate 4 + 9.7 4.6 1.06 -0.07 450
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